

Earth Science Data Systems Reuse Working Group Case Study: Simple, Scalable, Script-based Science Processor for Measurements (S4PM)

Christopher Lynnes (Christopher.S.Lynnes@nasa.gov)
Goddard Earth Sciences Data and Information Services Center
NASA/GSFC

http://disc.gsfc.nasa.gov/techlab/s4pm/ 4/29/2005

Project Description

- Goal: highly automated processing of science data
- Background:
 - Originally developed so GES DAAC could scale up for MODIS Reprocessing (2000)
 - Then MODIS forward processing (2001)
 - Then AIRS processing (2002)
 - Then replacement of EOSDIS Core System processing s/w (2002)
 - Then On-Demand subsetting (2004)
 - Then Data Mining (2005)
- Software Aspects:
 - Scope: all automated science processing at GES DAAC
 - Code: ~26,000 lines of Perl

Project Scenario (Optional)

- Simple, Scalable, Script-based Science Processor (S4P) implements a data-driven automated processing system with an assembly-line metaphor
 - •Work is executed at **stations** (Unix directories) based on text **work orders**
 - •Output work orders are sent to downstream stations

•Can be seen as a straightforward implementation of a data flow diagram

Project Scenario (Optional)

- Simple, Scalable, Script-based Science Processor
 - Simple: relatively small code base, simple GUIs
 - Scalable:
 - Up to all of the GES DAAC processing
 - Down to simple, single-algorithm scenarios
 - Script-Based: entirely in Perl
 - Science
 - Originally designed for science processing
 - But now used for automating other tasks

Software Reuse Aspects of Project

Software Assets Reused

- Reused Metaphor: assembly line directories from AVHRR 1-KM processing system at EROS Data Center
- Reusable Software Assets Created
 - S4P "kernel" and graphical monitor
 - Allows developers to implement their own processing or other automated system
 - University of South Florida: Direct Broadcast processing on clusters
 - LaRC: Calipso processing
 - Internal:
 - WHOM Ordering Engine: fault-tolerant submission of data orders
 - Watchtower: fault monitoring system for multiple machines/conditions
 - S4PA: Disk based data archive
 - S4PM
 - LaRC: MISR processing
 - EROS Data Center: ASTER On-Demand processing

Reuse Example

Benefits Realized

- Saved > \$2M through replacement of predecessor system
 - Operations + COTS + sustaining engineering
- Met schedule easily for each launch or campaign
- Reliability and flexibility far exceed predecessor
- Issues Encountered
 - Too flexible? Code base has gotten a little messy over time...
- Importance to meeting project goals or coping with constraints
 - Key functions (e.g., data mining) could not have been realized without S4PM
 - Data processing rates could not have been realized without S4PM

Assessment of Software Reuse Experience

- Using Reusable Software Assets
 - Ran across AVHRR 1KM concept almost by chance in a site visit
- Building Reusable Assets
 - Building for internal reuse enabled external reuse
 - Keep it simple / standalone / independent of COTS
 - Modularity and loose coupling
 - Workshop held for S4PM developers at EDC and LaRC
 - Difficult to get software released outside of NASA
 - Patent release, ITAR, export control, security, copyright...
 - S4P release took 1 year; S4PM took 8 months

Recommendations

- Streamline NASA software release process
- Use something like Tech. Readiness Levels to classify reusability